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Abstract-The conditions for existence of strongly supercritical steady detonations, proposed by Board and 
Hall, are considered. Fragmentation by local boiling is excluded, and only hydrodynamic mechanisms, such 
as boundary-layer stripping and/or Taylor instability can be operative. Truly steady supercritical 
detonations are achieved only when the fragmentation zone is terminated by an equilibrium 
Chapman-Jouguet plane (zero velocity and temperature difference between fuel and coolant). 

Strong sideways constraints are also necessary. 
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t, time after drop leaves shock front; 
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CJ, velocity relative to the shock ; 
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Greek symbols 

Subscripts 
b, 
c, 
d, 
db, 

eq, 
f; 

void fraction ; 
fluid mass source term due to debris 
formation equation (16); 
state parameter, equation (38); 
volume fraction of coolant as vapor; 
viscosity ; 
kinematic viscosity ; 
density ; 
interfacial tension ; 
dummy time variable ; 
direct contact heat flux per unit volume ; 
stripping parameter, E/( 1 -E). 

break-up ; 
liquid coolant; 
fuel drop; 
fuel debris particles ; 
equilibrium ; 
homogeneous fluid mixture of coolant 
(liquid and/or vapor) and debris; 

HMT 24 10 * 
1561 



1562 A. SHARON and S. G. BANROFF 

m, 
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2, 
3, 

melting ; 
initial conditions immediately behind 

shock front; 
separated flow; 
coolant vapor; 
wall ; 
undisturbed region ahead of shock ; 
immediately behind shock front ; 
Chapman-Jouguet plane at rear of 
steady fragmentation zone. 

1. INTRODUCTION 

VAPOK explosions, which result from rapid local 
mixing of a hot liquid (fuel) and a cold vaporizable 
liquid (coolant) on a time scale of 0.1-1.0 ms, are 

characterized by pressure shock waves with significant 
damage potential. In 1974 Board, Hall and Hall [1] 
suggested that there was a strong analogy between 
steady-state thermal and chemical detonation waves, 

since both are preceded by a pressure wave, behind 
which lies a subsonic (relative to the shock) reaction 
zone. In combustion shocks the reaction zone is 

terminated by a sonic velocity plane which serves to 
protect the shock from time-dependent rarefaction 
waves proceeding from the far-field boundary con- 
ditions. If the phase velocities are equal, both ahead of 
the shock and at the sonic velocity plane (homo- 

geneous flow), the jump balances for the chemical and 
thermal detonations have the same form, and the well 

established theory of chemical detonation can be 
invoked. In particular, the tangency (Chap- 
man-Jouguet or C-J) condition to the equilib- 

rium Hugoniot curve in the P-V plane of the reaction 
path line from the initial point represents a local sonic 
velocity condition, which can be shown to result in 
both a stable and minimum shock velocity. In both 
types of detonations the energy release in the reaction 
zone between the shock front and the C-J plane serves 
to sustain the shock in the face of dissipation due to 
internal reflections, friction, nonlinear (dispersive) 
effects and sideways expansion. In the case of thermal 
detonations the energy release results from fragmen- 
tation of the hot fuel droplets and subsequent rapid 

temperature equilibrium of the fuel fragments with the 
surrounding coolant. A major problem, therefore, 
consists of obtaining a realistic estimate of the mean 
fragmentation (or mixing) rate of the fuel particles 
(which may be liquid or liquid with a surface crust 
before the passage of the shock), as a function of local 
conditions within the reaction zone. 

In thermal detonations, however, the mixture at the 
end of the reaction zone may consist of two, three (if 
vapor is present), or effectively four (if the fuel frag- 
ments are not in temperature- and velocity- 
equilibrium with the surrounding coolant) phases. In 
this mixture the sonic velocity is no longer uniquely 

defined, and in fact a continuous spectrum of charac- 
teristic velocities exists. depending upon the frequency 

of the disturbance and the distribution of the phases. 
Furthermore, except at infinity, it is not possible to 
have true velocity equilibrium, which will be shown 
below to be a requirement for the stable juncture of a 
steady-state reaction zone with a time-dependent 
supersonic expansion zone. A similar conclusion was 

reached independently by Scott and Berthoud [2]. 
Finally, it is quite possible to have an effective cut-off of 
fuel fragmentation, and hence of energy transfer, 
before complete dispersal is achieved, which would 

correspond to incomplete reaction at the 
Chapman-Jouguet plane. It is thus seen that the 
analogy is rather limited, and a careful examination of 
the necessary conditions for the existence of a steady- 

state plane thermal detonation is required. 
This can be performed on two levels. The simplest 

approach assumes velocity and thermal equilibrium 
between the dispersed fuel and coolant at the (C-J) 
sonic velocity plane. In this case the mass, momentum 
and energy jump balances between a plane ahead of 

the shock and the C-J plane have the same form as in a 
combustion detonation. Two restrictions are implied : 
(1) thermal equilibrium implies essentially complete 
fragmentation of the fuel drops to fine debris (say 
< 100 pm); (2) the disturbance wavelength must be 
large compared to the mean debris diameter for the 
homogeneous-mixture sonic velocity (and hence tan- 

gency condition) to be applicable. The conditions at 
the CJ plane are then determined solely by the 

upstream conditions, plus the tangency condition, 
and are independent of the kinetics of the fragmentation 
process. Pressures were thus predicted of c lo4 bars 
for a UO,/Na mixture, and _ lo3 bar for a S/H,0 
mixture. Such pressures are, of course completely 

unacceptable from a reactor safety point of view, so 
that a more detailed examination becomes imperative. 
If it cannot be assumed that velocity equilibrium exists 
between the phases at the end of the effective fragmen- 

tation zone, the jump balance equations no longer 
have a unique solution, and the tangency condition in 
the (zero relative velocity) P-V plane is not applicable. 
Instead it is necessary to have recourse to the differen- 
tial equations governing the behavior in the fragmen- 
tation zone. This has been done by Hall and Board [3], 
and independently by Scott and Berthoud [2] and the 
present authors [4, 51, with generally similar results. 
However, the details vary, depending upon the assump- 
tions concerning the constitutive equations for frag- 

mentation and mixing. 
In the present paper we consider hydrodynamic 

instability as the fragmentation mechanism. This 
mechanism is basically independent of boiling charac- 
teristics and hence can result in pressures higher than 
the critical pressure. Fragmentation mechanisms 
based on boiling can result only in pressures less than the 
coolant critical pressure. In accordance with the 
observation of Henry et al. [6] on pressure thresholds 
for triggering thermal explosions, the boiling fragmen- 
tation mechanism is probably cut off long before the 
full pressure is realized. In finite region this would 
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imply unsteady behavior, in which a relatively weak 
pressure wave passes through the mixture, collapsing 
the vapor blankets, followed by unsteady heat transfer 
and expansion. 

Hydrodynamic fragmenration is induced by the 
relative velocity between the fuel drops and the 
coolant. This relative velocity can be fully realized if 
the shock front is steep and there is a large density ratio 
between the constituents. Some studies on the propa- 
gation of shock waves in a two-phase region [7] 
show rapid attenuation and dispersion of the shock 
front, despite complete bubble collapse. 

It should also be noted that coarse initial mixing 
with negligible energy transfer can probably only be 
achieved if film boiling is the mode of heat transfer 
between the fuel and the coolant. It is possible to 
obtain this initial condition with water and common 
metals, such as tin and aluminum. For UO,/Na 
mixtures the interface temperature upon contact is 
lower than the minimum film boiling temperature, and 
stable film boiling can occur only if the sodium 
temperature is close to saturation (providing the 
pressure remains relatively constant). Even small 
amounts of subcooling will make the film boiling 
unstable, and hence it is doubtful whether the initial 
requirement can be satisfied. 

In this paper an equilibrium model for the det- 
onation wave is described. Based on this model the 
C-J conditions are derived and the behavior of the 
flow variables in the reaction zone is investigated. A 
second paper will deal with the application of this 
model to possible fuel-coolant interactions. 

2. DESCRIPTION OF THE VARIOUS 
INTERACTION ZONES 

Let us consider an idealized pressure shock wave, 
with zero rise time, passing through a fuel-coolant 
mixture initially at rest in the laboratory frame. The 

vapor collapses immediately behind the shock and a 
relative velocity is induced between the fuel drops and 
the coolant, thus causing fuel stripping. 

Due to drag and momentum exchange caused by 
mass transfer, the velocities of the unfragmented drops 
(d) and the fluid around it (f) approach each other in 
the relaxation zone until an equilibrium velocity is 
reached (Fig. 1). 

The initial unreacted mixture (1) consists of fuel 
drops and coolant liquid and vapor (not necessarily in 
temperature equilibrium). Immediately behind the 
shock, region 2, only unfragmented fuel drops and 
liquid coolant exist (K~., = 0), moving at velocities U, 
and U,, respectively (Fig. 2). 

In the general case, the mixture at the 
velocity+quilibrium plane (3) consists of four com- 
ponents: unfragmented fuel drops (d), fuel debris (&), 
liquid coolant (c)and coolant vapor (0). The last three 
are the constituents of the fluid (f) surrounding the 
drops (Fig. 3). 

Owing to the small debris particle size, it is reason- 
able to assume a uniform fluid temperature, 7’7,. 
Hence, vapor will exist (I:,. > 0) only if P, is less than 
the coolant critical pressure and T,, equals or exceeds 
the saturation coolant temperature Tsor(P3). If T, , is 

less than the fuel melting temperature, T,, then the 
debris will freeze. 

Let E be the fraction of mass stripped ; E = mJm,, 
where m, is the mass stripped from a single drop and m, 
is the initial mass of the drop. 
The debris volume fraction in the debris-coolant 
“fluid” is then [4] 

(1) 

where 

c=L=L. 
1-E 

(2) 
m, - m, 

Shock Shock Vel. r L 7 

Frame Mix. HI.1 

Shock 
Front 

_Y I 
Relaxation ~Velo,cjty 

Zone Equlllbrlum 

FIG. 1. Description of the various interaction zones. 
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3. BALASCE EQUATIONS 

A given set of initial conditions will define the 
unreacted mixture properties, namely P,, 7’,, T,,, T,.,. 

%I ,, I:,., which are the pressure, temperature and volume 
fraction of the different components. 

Four balance equations, connecting the initial con- 
ditions with conditions at any other plane, must be 
satisfied : 

(A) fuel material balance, 

(B) coolant material balance, 
(C) overall momentum balance, 
(D) overall energy balance. 

Eight quantities specify conditions at a given plane: P. 
7’,, T,., Q, I:,.. E, IiJ and U,; together with the shock 
velocity, U,. this gives 9 unknowns to be determined. 
T, should change very little in the relaxation zone in 
view of the short time scales involved and the limited 

contact area. Moreover, P, T and z:,. are interconnected 
since if i:,. > 0 then T = T,,, (P) for (P < P,,), and if f:,, 

= 0 then P > P,, or T < T,,, (P) for (P < P,,). Hence, 
we have 4 equations and 7 unknowns (or 6 equations 
with 9 unknowns). Immediately behind the shock 
front, region 2, the stripping process has just started, 
i.e. E = O*; thus two additional conditions must be 
further determined. If “frozen” momentum transfer 
can be assumed (possibly for weak shocks), all the 
unknown quantities can be expressed in terms of a 
desired parameter. Most commonly this parameter is 

taken as the pressure, shock velocity (Mach number) 
or the Bond (or Weber) number. 

At the velocity equilibrium plane (3), the velocity of 
the two phases are equal (II, = U, = Cl,,,), and again 
two additional conditions have to be specified. On the 
other hand, if complete fragmentation is specified at 
the end of the fragmentation zone, and supercritical 
pressures exist (l:, = 0), only 4 unknowns remain (P, 
T,, Ur and L:, ), which are determined solely by the 
four jump balances (Section 7). 

4. EQUATIOUS OF RELAXATIOY ZONE 

To follow the drop break-up behind the shock the 
differential mass momentum and energy equations are 
integrated behind the shock in a manner similar to 
Kriebel [8] and Rudinger [9] for dusty gases. In this 
case, however, mass is transferred between the drops 
and the surrounding fluid, and the drop volumetric 
fraction is not negligible. 

The dynamic equations were taken as for a sepa- 
rated l-dimensional two-phase flow with irreversible 
mass transfer (exchange factor TV = 1) [lo]. The two 

phases consist of the unfragmented drops and the 
surrounding fluid. which IS a homogeneous mixture of 

* This follows from the conservative assumption of a sharp 
pressure shock, resulting in rapid bubble collapse and 
maximum initial relative velocities. If the pressure shock has a 
non-negligible thickness (compared to the mixing scale), due 
to dispersive effects, some fragmentation may occur within 
the pressure shoch itself. 

Unit Volume 
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FIG. 2. Schematic description of a unit volume of unreacted 
mixture. 
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FIG. 3. Schematic description of a unit volume of mixture in 
the velocity equilibrium region. 

coolant liquid and vapor and fuel debris. It is assumed 
that the debris reaches thermal and velocity equilib- 

rium with the fluid immediately, whence 

$ (IId t(d ud) = - r.,., (3) 

(4) 

(5) 

(6) 

(7) 

= r,[A&+ #J: - U;,] + U,F + cp. (8) 

The drag force on the fuel drops, assumed to be spheres 
of uniform radius, at any instant is 



Steady supercritical plane thermal detonations 1565 

while the drop radius is 

(9) 

where m, is the initial mass, and E, the fraction 
fragmented, can be considered to be progress 
parameter. 

The density of the fluid mixture, p,, is 

Pf=PdaD+[Pe(l-I:,)+Prl:l;](l-D) (11) 

while tp, the direct contact heat transfer rate per unit 
volume, is 

(12) 

This term is generally negligible, but can be taken into 
account by taking the Nusselt number, Nu, to be 

Nu=2hr,_4. 
k, 

(13) 

Here h is the average heat transfer coefficient and k, is 
the average fluid thermal conductivity. 

kp-.x,.,k, + (l-.x,,)kd (14) 

where 

xc, = P,(l -c”) (1 - D)/P,. 

The mass source function for the fluid is 

(15) 

(16) 

and the stripping rate, dE/dz, must be given inde- 
pendently. If vapor exists in the reaction zone, T, = 
T,,,(P) and the vapor volumetric fraction will be 
determined from equation (8). 

5. STRIPPING EQUAnONS 

Harper, Grube and Chang [l l] identified two 
mechanisms for liquid drop break-up behind a shock 
wave passing through a gas-liquid mixture: 

(A) Taylor instability mechanism for Bond num- 
bers greater than 105, 

(B) boundary layer stripping for _ 10 < Bo < 105. 
The Bond number is defined as: 

we = 1 c pfrdUf 
- (17) 

8” CT 

where g is the drop acceleration. Although the theory is 
derived for a fluid of negligible density surrounding the 
drop, the derivation can be applied approximately to a 
single drop immersed in a lighter liquid, with the 
substitution Bo = (pd- pf) g r$afd. 

Taylor instability is the faster mode, with break-up 
time, tb, given by Simpkins and Bales [12] based on 
their air-water data as: 

(18) 

where the reference quantities are evaluated im- 
mediately behind the shock. Two studies have been 
conducted to date on shock-induced drop fragmen- 
tation in liquid-liquid systems, both in an isothermal 
mercury dropwater configuration. Baines et al. [ 131 
subjected mercury drops, initially on the bottom of a 
horizontal tube, to suddenly applied water flows of 
4- 17 m/s (Weber numbers of 100-2000). Complete 
fragmentation was observed, predominantly by 
boundary-layer stripping, with T, = 3-5, in agree- 
ment with the air-water observations. 

On the other hand, Pate1 and Theofanous [14, 153 
subjected mercury drops to much stronger shocks 

(P,,,.,, * 300 bars ; We,,,,, - 2.1(P) and observed a 

quite different mode of break-up, which they attri- 
buted to Taylor instability, with dimensionless break- 
up times an order of magnitude smaller (7, - 0.4). 
The reasons for this discrepancy are not at present 
clear. We consider at this time the case when 
boundary-layer stripping is the predominant mode. 
Taylor instability will be considered in a second paper. 

Other studies of droplet fragmentation in air shocks 
[l&19] are in general agreement with T, = 33.5. 
However, for a single water drop subjected to an air 
shock, as in these experiments, the relative velocity 
changes very little during the fragmentation process, 
since the air velocity is unchanged by the break-up, 
and the drop velocity is always small compared to the 
air velocity. Hence the relative displacement at break- 

up, ‘rb = U,, fb, where U,, is the relative velocity 
immediately behind the shock. One can therefore write 
equation (30) in the form 

, (19) 

In dispersed liquid-liquid systems, however, the rela- 
tive velocity falls rapidly behind the shock. Since I, is 
a Lagrangian time variable following a single drop to 
its destruction, the relative displacement between the 
drop and the surrounding fluid mixture at the end of 
the fragmentation zone is given by 

* _r 
“*b = U,(s) dr. (20) 

We shall use equation (19) rather than the initial 
relative velocity, in extending the air--water results to 
dispersed liquid-liquid systems, since this approx- 
imates the integrated effect of the relative velocity, 
even after the local Bond number falls below the 
theoretical cut-off value of c 105. This modification is 
therefore probably conservative, but the need for 
additional liquid-liquid data in densely dispersed 
systems is clearly evident. 

Based on air-water data, the stripping rate can be 
calculated by two different correlations: 
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(A) Ranger and Nichols [16] (R-N) equation 

dm 
2 = m u dE = (12n3)l 2 

13 

dt ’ ddz 

‘d 0 
1 )6 

x - pdvi” U, rj’2 (21) 
vf 

where v denotes kinematic viscosity. This correlation 
usually underestimates the stripping rate. 

(B) Reinecke and Waldman [17] (R-W) equation 

E=$ -cost)] (22) 

We now define a dimensionless time taking into 
account variations in relative velocity by 

(23) 

Since the relative velocity decreases monotonically 
with time, it follows that 

T I&_, 
Tb 

(24) 
tb ‘rb 

Substituting this inequality into equation (22) one gets 
an upper bound to the stripping: 

x {l - cos[$+-,’ J]. (25) 

The relative displacement, z,, can be found from: 

dz, _ IJ, 
dz U, 

(26) 

Hence, the stripping rate can be overestimated by: 

dE 
-= 
dz 

i 

u 
x 

z, dp, p;.2r+-- 

ud 2~;,~ dz 
(27) 

If one assumes that z,~ is a constant, rather than T,, 
then the second term in the round brackets disappears. 
From now on we shall assume that this term is zero, 
since otherwise continuing fragmentation is predicted 
at zero relative velocity. 

Finally, in order to interpret single-drop fragmen- 
tation data, it is necessary to take into account the 
difference in the relative velocity behavior behind the 
shock front for a dense dispersion of drops in sur- 
rounding fluid. For a dense dispersion, the relative 
velocity decreases rapidly behind the shock, with a 
time constant that depends upon the effective drag 
coefficient. Denoting T,, as the dimensionless break- 
up time based on the initial relative velocity, for these 
data a rough estimate might be 

In general, the total number of conservation equa- 
tions for mass, momentum and energy in the fragmen- 
tation zone behind the shock front will be 3n, where n is 
the number of distinct phases or pseudo-phases. We 
define a pseudo-phase as a mixture of two or more 
phases on a scale sufficiently fine that local velocity 
and thermal equilibrium is preserved for all per- 
turbation frequencies of interest relative to the charac- 
teristic time scales of the fragmentation zone. Accord- 
ing to this definition, tin debris particles 1OO~m in 
diameter mixing uniformly with water, or UO, par- 
ticles 10 pm in diameter mixing with sodium, both in 
absence of vapor, would serve as examples of pseudo- 
phases. For the equations (3k(8) given earlier, n =2, 
and this will be the thrust of the following discussion. 
However, if the fragmented UO, debris is much larger, 
thermal equilibrium may require a longer time than 
velocity equilibrium between the fragmented fuel 
drops and the surrounding coolant mixture, as noted 
by Hall and Board [3]. In this case n = 3. If, in 
addition, vapor is present at the end of the fragmen- 
tation zone, II = 4. The complete set of equations for n 
= 3 or 4 has not been treated, in view of the lack of 
experimental information, and approximate methods, 
using six or even fewer equations, are at present 
necessary. Nevertheless, an important distinction can 
be drawn between the cases for n 2 2. If the pressure at 
the C-J plane, which terminates the reaction zone, is 
below the coolant critical pressure, vapor can exist at 
that point, and n > 2. On the other hand, if the shock 
pressure is well above the critical pressure, vapor will 
not be present behind the shock, and n < 4, and for 
finely-dispersed debris, n = 2, throughout the frag- 
mentation zone. Furthermore, if fragmentation is 
complete at the C-J plane, n = 1 and homogeneous 
flow is achieved, as postulated in [l]. 

In general, the steady-state l-dimensional con- 
servation equations can be written in vector-matrix 
form as 

T, - ; T,,. (28) AZ&; X=(X,), i=l,...N (29) 

We turn now to a consideration of the 
Chapman-Jouguet conditions for a steady plane ther- 
mal detonation. 

6. EXTENDED CHAPMAN-JOUGUET CONDITIONS 
FOR A THERMAL DETONATION WAVE 

6.1. Preliminary consideration 
Chapman-Jouguet conditions for single-phase 

combustion detonations have been extensively treated 
[20-221, although little is known about the stability of 
the detonation with competing chemical reactions, 
some of which do not proceed to equilibrium at the end 
of the steady-state reaction zone. The extension to 
multiphase thermal detonations is considerably more 
complex, and has only recently been attacked by Hall 
and Board [3], and independently by Sharon and 
Bankoff [S] and by Scott and Berthoud [2]. The 
treatment given below follows our earlier develop- 
ment, but presents several generalizations. 
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where X is a vector of flow variables, b is a source-term 

vector, and N _< 3n, since some of the flow variables 
may be redundant due to algebraic constituti-de 
relationships. 

In order for the C-J plane to join the time- 
independent reaction zone and time-dependent super- 
sonic expansion zone, dX/dz must be indeterminate, 
which implies that 

det A = 0, (30) 

detBj=O, j=l,...N (31) 

where Bj is obtained by replacing the jth column of A 

with b. Equation (30) is the sonic velocity condition, 
while equation (31) is automatically satisfied if b = 0 
(all source terms vanish at the C-J plane, implying 
complete equilibrium). 

More information can be obtained from the charac- 

teristic velocities of the unsteady conservation 

equations : 

C$+AE=b. (32) 

To protect the shock from rarefaction waves pro- 
gressing from the far-field boundary conditions of the 

form 6b exp [i (or + kz)], where i. = w/k may be 
complex, it is sufficient that 

Re i,,>Rei., 2 . 2 Rei.,,_, 2 i.,V = 0 (33) 

where characteristic velocities & i = 1, N are the 
roots of 

det (i.C+ A) = 0. (34) 

In view of equation (33), this reduces to equation (30). 
Physically, this implies that the C-J mixture velocity is 
equal to the largest sonic velocity relative to the 

shock front, but in fact the flow becomes choked when 
the smallest sonic velocity relative to the shock is 
achieved. It is doubtful, therefore, whether a truly 

steady thermal detonation can be attained. On the 
other hand, Wood and Kirkwood [23] have suggested 
that the higher perturbation velocities, which cor- 
respond to higher frequencies, are rapidly attenuated 
due to friction. The possibility of quasi-steady (slowly- 
varying) thermal detonations is discussed in the next 
section. 

6.2. Equilibrium us non-equilibrium C-J planes 
We see that equation (31) is satisfied if complete 

equilibrium exists at the C-J plane, implying that Ir, 

F, and rp, the interphase mass, momentum and heat 
transfer terms, vanish. As noted by Scott and Berthoud 
[2], equilibrium also implies that the entropy gradient 
vanishes. This state tends to be relatively stable, since 
small perturbations from equilibrium tend to be 
damped out by friction and/or heat transfer. We call 
these normal C-J solutions. A simplification is poss- 
ible by noting that rp is generally small, and, in the 

absence of vapor, has a negligible effect on the droplet 
and fluid mixture densities. Hence, to a good degree of 

approximation, it is sufficient that I, and F vanish at 
the C-J plane. This is achieved when U, = 0. This 
quasi-equilibrium condition will be called the zero-slip 
C-J condition, and applies strictly for supercritical 
pressures. Zero-slip is approached at constant C,) only 
asymptotically, so that there appears to be some 
arbitrariness concerning the degree of approximation 
to zero-slip at the C-J plane that is required with a 
given set of initial conditions and geometry for a near- 

stationary solution. This in turn determines the effec- 
tive reaction zone length, and hence the vulnerability 
to sideward expansion. In fact, however, this arbitrari- 

ness is computational rather than physical. When the 
Reynolds number Re = 2r,p$l,Jp, < 1, Stokes flow 

exists (C, = 24.!Re). One finds, however, that for Re = 
1, and the radius of the remaining drops rd = 0.1 cm in 

water, U,JU,, - 5 x 10e6. Hence one finds that the 
true equilibrium reaction zone is of the order of 
lo’-lo4 m. 

Such steady reaction zone lengths can only be 
achieved in geophysical applications, such as 

lava-water interactions, or in astrophysical deto- 

nations. From a practical point of view, it is therefore 
necessary to consider alternative definitions of the 

reaction zone length, such as the distance behind the 
shock where fragmentation effectively ceases. We call 
such detonations quasi-steady, on the assumption that 
the reaction zone will be slowly varying in time 
compared to the time for propagation of the shock 
through a characteristic length. The satisfaction of this 
condition can only be checked by recourse to the 

unsteady equations. 
It is also possible for equations (31,32) to be satisfied 

under non-equilibrium conditions [3] for particular 
combinations of the flow variables. For supercritical 
pressures, these isolated solutions will be called sin- 
gular C-J planes. Stability to small perturbations 

cannot be established, and indeed there seems to be no 
obvious restoring force from a physical point of view. 

A quite different picture is presented at subcritical 

pressures, where fragmentation may be considerably 
aided by violent boiling, as noted previously [24]. Hall 
and Board [3] have presented a vapor-detonation 
model, in which the coolant may be below the local 

saturation temperature, so that a portion of the heat 
transferred from the fuel increases the liquid enthalpy, 
and the remainder produces additional vapor. This is 
also a singular solution, but may be stable, since a 
small decrease in vapor blanket thickness around the 

fuel drops increases the heat transfer, which tends to 
restore the vapor film. In fact, quasi-steady thermal 
detonation waves have been observed in metal-water 
stratified mixtures, [25,26] qualitatively agreeing with 
the model. 

Our present concern, however, is with the equihb- 
rium coolantdebris mixture model, which is parti- 
cularly applicable in examining possible supercritical 
thermal detonations. 
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6.3. One-dimensional homogeneous coolant-debris mix- Ui, 2 1 
ture C-J condition K,=---- ---++ I ErK/ 

In view of equation (31) all components of dX/dz 
P/U: P/U, PAJ* Pf 

become indeterminate at the same plane, so that it is - Pf 
sufficient to consider only the pressure gradient. 

P:C, 
I 

u, (Ai, + i Uf) (41) 

Equations (3t(6) are the continuity and momentum 

equations of the fuel droplets and the surrounding 

and 

mixture. These equations can be re-arranged in the 

form : 

i 

ad 
p+-- 
Pd”: 

i 

1 1 
+ 

P/U: Pd”: i 
F+a’di’r+%!$ (34) 

P/ dz d 

The droplet phase has the equation of state pd = p(P, 
S,), so that 

dpd = Ci2dP - ~ 
TdbdPd dS 

cl% * 

(35) 

where jd is the thermal expansion coefficient of the fuel. 
By assumption, the fluid phase is a homogeneous 

mixture of coolant and fuel debris, and its equation of 

state is p/ = pr(P, S,., x,,), where xdb is the debris 

quality (weight fraction) in the fluid. Since dx,, 
depends only on the mass transfer, dE, for constant 

bd K, = ~ - p/ 

P: C,* U, Ps CP, U, 
(42) 

where T/ is obtained from equations (16) and (27). We 
note that if the term in parentheses containing dp,/dz 

in equation (27) is not set equal to zero, then there will 
be additional terms in the denominator @ of equation 
(39) arising from the state equation (36). As noted 
above, we set this term to zero on physical grounds, so 
that r/ -+ 0 as U, -+ 0. This implies, however, if other 
fragmentation mechanisms than those due to relative 
velocity are operative, the choking condition will be 
different. In the present case, by setting @ = 0, one 

obtains the stratified-flow sonic velocity condition [2, 
3, 4, 61: 

01 

pressure and entropy the fluid equation of state is of 
‘d,Pf3+i’daJ, 

! 

12 

the form c,, = u,, = Cd c, 
ud,p/,C~+a/,PdCd2 

(44) 

dp,=C;‘dP-pdS,+.,dE (36) 
PI where C, is the speed of sound in the homogeneous 

where K~ is obtained from equations (1) and (2). Upon 
(coolant-debris) fluid mixture [6] : 

substituting (35) and (36) into (34), one obtains + (I-D)r:, + (I-D)(l-r:,.) 
~ 

P,, c:, P,, Cc2, 1 ’ 
+1-M:) +&l-M;) 
Pd”: p/u: I 

(45) 

F 

“rT,B, dSf adTdSd dh 
_~__~_ 

C,, dz C,d dz 

where M is the Mach number (U/C) and 

j’db - PC 
K/ = 

a@dbUd (1 -E)’ 

(37) 

(38) 

Substituting equations (7) and (8) into equation (37), 
and using the thermodynamic relation : T dS = di - 
dPJp, one gets: 

dP K,F+KrT,+K,cp 
-= 
dz 

- = 4 (39) 

ad-(l-M:) + A(l-M;) 
Pd”,2 PP: 

where 

1 1 
K,=------ 

pdUd 

P*G p: CP, Uf 
- &9 (40) 

However, if fragmentation can occur by mech- 

anisms other than those associated with the relative 

velocity, additional flashing terms can appear in 
equation (39), and consequently U, would be some- 
what higher. We note that the sonic velocity calcu- 

lated by equation (44) is higher than the homogeneous 
speed of sound in the mixture. Hence the C-J con- 
dition must involve the separated-flow speed of sound 
in order to prevent higher frequency waves from 

weakening the shock. 

7. DETONATION HUGONIOTS AND ZERO-SLIP 
C-J CONDITIONS 

The velocity equilibrium plane, region (3), may be a 
C-J plane. As discussed above, the pressure at that 
plane can be specified as a function of two variables: 
P, = P, (I?~, E) where Ua = l/p,, and the fragmen- 
tation extent, E. The resulting curves in a (P, 0) plot, 
where E is the parameter, have been termed [4] the 
partial detonation Hugoniots. 

The 4 balance equations are : 
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‘d, u, = t1 + 8 %,, Ueq, 

aI, Pr, U1 =Pfcl r 

P,--PI =b U, (U, -Ueq), 

(46) 

(48) 

Ep, Aia + $ (U: - U,,) = pr, k Ai, + E. (49) 
d, ‘d, ‘db 

If the fragmentation is completed, E = 1, then the two 

flux balances become : 

ad, Pd u, = &‘db Urq, 

XJ, ~1, U, = (1 -DIP,, U/rq. 

(W 

(51) 

If direct contact heat transfer between the phases is 

negligible, the C-J plane can be determined for every 
value of E from equations (44) and (45) for the 
equilibrium sonic velocity, together with equations 

(46)-(49). If the two phases at the velocity equilibrium 
plane are considered to be homogeneous, one can find 
the C-J conditions graphically by drawing a tangent 

from the initial point (P,, 01) to the detonation 
Hugoniot [20]. This method can be used for cases 
where E + 1. For E cc 1, the two phases are still 

separated, although there exists no slip between them. 
The speed of sound is then different from the homo- 
geneous speed of sound, calculated from the slope of 

the tangent to the Hugoniot. 

8. BEHAVIOR IN THE RELAXATION ZONE 

8.1. The pressure prqjile 
Referring now to equation (39), when cp is negligible 

the pressure gradient is given by: 

dP 
-= 
dz 

K,F+K,l-, 
(52) 

The denominator is always positive inside the 

reaction zone, which is characterized by subsonic flow 
relative to the shock. Hence the sign of the pressure 
gradient is determined by the numerator. 

K, is always positive (p,Uj > p/U: and p is small), 
while K, turns out to be negative for all cases 
investigated. Hence large drag forces will increase the 
pressures while large fragmentation rates will reduce it. 

According to the R-W equation, r, is proportional 

to the relative displacement, z,. Since z, -+ Oclose to the 
shock front (z + 0), dP/dz will always be positive 

immediately behind the shock. As the relative velocity 
approaches zero, the pressure gradient approaches 
zero as well, unless sonic velocity is also being reached. 
The stripping rate may be large enough a short 
distance behind the shock to make the mass transfer 
term equal to or greater than the drag term, so that the 
pressure profile exhibits a maximum. We note that 
different behavior is predicted by the R-W equation, 
since here I-/ attains a maximum at the shock front. 

8.2. The velocity prqfiles 
Since dP/dz > 0 immediately behind the shock 

front, equation (17) requires that dU,/dz < 0 as z -+ 0. 

When U, + 0, F and dP/dz both approach zero, hence 
the drop velocity should level off near the velocity 
equilibrium. Away from the shock front, it is possible 
for the drops to accelerate relative to the shock. 

It is more difficult to predict the fluid velocity 
behavior. Immediately behind the shock it is possible 
for the fluid to decelerate relative to the shock. as 

predicted by Kriebel [8]. Away from the shock where 
dP/dz is small or negative, one might expect the fluid 
to accelerate until equilibrium velocity is reached. 

8.3. Some qualitatirle results 
Taking the shock front thickness to be that of the 

region where vapor film collapse occurs, momentum 

transfer between the fuel drops and the coolant liquid 
may be non-negligible, in view of the large change in 
void fraction. Hence it is generally necessary to 
integrate backwards from the assumed C-J plane to 
the shock to determine whether a consistent set of 

assumptions, corresponding to a possible steady det- 

onation, has been made. Calculations of this sort will 
be presented in a second paper, but here we perform 

some forward integrations to demonstrate some 
qualitative features of the problem. For this it is 

necessary to neglect momentum transfer within the 
shock zone, whi‘ch then allows separate mass and 
momentum jump balances across the shock. For a 
given undisturbed fuel-coolant mixture ahead of the 

shock, one can choose a value of the Weber number 
behind the shock (or equivalently, the shock velocity). 
The shock jump balances are: 

[ei pi Ui] = 0, i = d,f, (53) 

[tl, (P + pi U,‘)] = 0. (54) 

The energy equation has been omitted, since the 

density change due to vapor collapse dominates. Using 
the conditions immediately behind the shock (region 
2) as initial conditions, the equations of the reaction 
zone are integrated forwards until the equilibrium 
velocity is reached (region 3). This satisfies the sonic 

C-J condition for a steady detonation. However useful 
qualitative information can be readily obtained. 

Calculations of this sort were carried out with 
Sn/H,O mixtures with equal volumes of tin, water and 
steam in the unreacted mixture. The following para- 
meters were chosen: C, = 2 and 10; initial drop 
diameter = 1, 3 and 5 cm; and the R-W stripping 
equation (34). Sample results are shown in Figs. (4)-(7). 
More details are given elsewhere [4]. It is found that 
the flow variables change rapidly in a relatively thin 
region behind the shock. This active region is followed 
by a long tail, where changes are slow. The effective 
reaction zone length, L, can be defined as the distance 
from the shock front to the plane where E = (1 - em ‘) 
Efi,,,. This length is about 20% of the length at which 
the relative velocity is nearly zero say, (U,/U,, = 
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FIG. 4. The effect of C, on the pressure and fragmentation 
profiles. T, = 3; ad, = l/3; c,., = 0.5; We = 10’. Sn/H,O. 

u/ut 

075 

- do= lcm 

--- d.= 5cm 

// 
I’ 

I 
J 051 I I I I I 

0 0.2 0.4 0.6 0.8 1.0 

2 meters 

FIG. 7. The effect of drop diameter on the velocity profile. 
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FIG 5. The effect of C, on the velocity profile. (Conditions as 
for Fig. 4.) 
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FIG. 6. The effect of drop diameter on the pressure profile. 
(Conditions as for Fig, 4.) 

OOOS), and one or two orders of magnitude smaller 
than the zero-slip length, calculated with Stokes drag 
when Re < 1. 

From these calculations the following observations 
can be made: 

(1) Significant fragmentation is predicted with C, 
= 2 and T, = 3. However, it is difficult to achieve 
sonic conditions (M, = 1) and reasonable reaction 
lengths (L, < 0.1 m) in this case. 

(2) Larger values of C,), still with T, = 3, reduce the 

predicted reaction length and increase the final press- 

ure. However, the stripping rate becomes negligibly 
small and the equilibrium velocity is decreased. 

(3) For large drops there is less stripping and the 
reaction zone length is larger. Hence fine initial mixing 
is important. 

(4) High fragmentation rates tend to decrease the 
final pressure, increase the final velocity and decrease 
the reaction length. Hence, small break-up times favor 
the possibility of a quasi-steady detonation wave 
passing through the fuel<oolant mixture. 

9. CONCLUDING DISCUSSION 

We have concerned ourselves here with strongly 
supercritical steady detonations, proposed by Board 
and Hall, for which fragmentation by local boiling is 
excluded, and only hydrodynamic mechanisms, such 
as boundary-layer stripping and/or Taylor instability, 
need be considered. Pressures of this sort have not 
been observed experimentally. 

An examination of the indeterminacy condition for 
a protected shock shows that the dependent variables 
may assume isolated values at the end of the fragmen- 
tation zone which make the pressure gradient inde- 
terminate. However, in contrast to the subcritical 
pressure case, where an increase in void fraction leads 



Steady supercritical plane thermal detonations 1571 

to a reduction in heat transfer, and hence to a decrease 
in void fraction, there is no obvious feedback mech- 
anism to return the perturbed system to the isolated 
singularities. Hence it is suggested that they are 
unstable to small perturbations, and that truly steady 
supercritical detonations are achieved only when the 
fragmentation zone is terminated by an equilibrium 
Chapman-Jouguet plane (zero velocity and tempera- 
ture difference between fuel and coolant). A similar 
conclusion has been stated by Scott and Berthoud. 
This is not impossible of achievement, since the drag 
coefficient depends upon the Reynolds number, so that 
velocity equilibrium may occur within a finite distance. 
On the other hand, the required reaction zone lengths 
are quite unrealistic, as suggested by approximate 
calculations using T, = 3. This is not to say, however, 
that slowly-varying detonations are unfeasible. To 
examine this possibility a numerical solution of the 
unsteady conservation equations, using singular per- 
turbation methods, is required. Furthermore, if T, _ 
0.4, as reported by Pate1 and Theofanous, even the 
steady detonation cannot be dismissed from 
consideration. 
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SUR L’EXISTENCE DE DETONATIONS THERMIQUES PLANES, SUPERCRITIQUES ET 
STATIONNAIRES 

R&urn&-On considtre les conditions d’existence de ditonations fortement supercritiques et stationnaires 
proposCes par Board et Hall. On exclue la fragmentation par Cbullition locale et seuls les mtcanismes 
hydrodynamiques, comme le stripping de la couche-limite et ou l’instabilitt de Taylor, peuvent Btre actifs. Des 
detonations supercritiques stationnaires sont rCaIisQs lorsque la zone de fragmentation est terminh par un 
6quilibre plan de Chapman-Jouguet (vitesse nulle et diffkrence de tempkrature nulle entre le carburant et le 

rtfrigdrant). De fortes contraintes sent aussi ntcessaires. 
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UBER DIE EXISTENZSTATION~;RERUBERKRITISCHEREBENER 
THERMISCHERDETONATIONEN 

Zusammenfassung-Es werden die von Board und Hall vorgeschlagenen Bedingungen fur die Existenz 
tiberkritischer stationarer Detonationen behandelt. Fragmentation durch ortliches Sieden wird ausgeschlos- 
sen, und nur hydrodynamische Mechanismen wie zum Beispiel Grenzschichtablosung und/oder Taylor- 
Instabilitat sollen wirksam sein. Wirkliche stationare iiberkritische Detonationen konnen nur dann 
erzieltwerden, wenn die Fragmentationszone durch eine Chapman-Jouguet Gleichgewichts-Ebene (Ge- 
schwindigkeit gleich null und Temperaturunterschied zwischen Treibstoff und Ktihlmedium) abgeschlossen 

wird. Starke, seitliche Zwangsbedingungen sind ebenfalls notwendig. 

0 CYLBECTBOBAHMM CTAuMOHAPHblX CBEPXKPMTMriECKMX fl_UOCKMX 
TEfIJfOBblX flE@OPMAIJMti 

Amio~aunn ~~ PaCCMaTpHBiiloTCR OIIHcPHHbIe 6Op,lOM H XO%7OM ycnOB‘lS cyLU~cTBOBk,"&,~ CBepXK,,,,- 

TH%CKIIX CTiiUHOHaPHblX iWTOHkiUkiii. ,&CfleprHpOBaHHe UO3. BAHRHHeM nOKiL!,bHO~O KIIUCHHR He 

yWiTbIBaeTCn M Upe0,nOnaraeTCR. 9TO LiMelOT MeCTO TOnbKO pdcC,lOeHlle UOr,,dHH',HOrO C.f,OIl N 

T-k,OpOBCK?lf, HeyCTOhfBOCTb. CTiW8OH~pHWl CBepXKpATH'feCKaZ4 L,eTOHdUHIl A-lOCrMraeTCN TOIlbKO 

B TOM cnyqae, korna 30na nncneprwposanun orpamiqeua pasttoaecuol tmockocrbto qenMaua )Ktore 
(HyneBaR CKOPOCTb H Pa3HOCTb TeMUepaTyp TOn.lUBa M TeU,,OHOCHTenR). HeO6XOflHMbl ,aKxe 

XECTKHe 6OKOBbIe OrpaHW4HTeJH. 


